

Welcome to EvalAI’s documentation!

EvalAI [http://eval.ai/] is an open source platform for evaluating and comparing machine learning (ML) and artificial intelligence algorithms (AI) at scale.

It is built to provide a scalable solution to the research community to fulfill the critical need of evaluating machine learning models and agents acting in an environment against annotations or with a human-in-the-loop.

Contents:

	Introduction
	Features

	Installation
	Dependencies

	Installation instructions

	Host challenge
	Host challenge using github

	Host Prediction upload based challenge

	Host Code upload based challenge

	Challenge configuration

	Writing Evaluation Script

	Approve a challenge (for forked version)
	Step 1: Approve challenge using django admin

	Step 2: Reload submission worker

	Participate in a challenge
	1. Visit eval.ai

	2. Sign up or Log in

	3. Choose challenge

	4. Challenge Page

	5. Create Participant Team

	Make Submission Public

	Make Submission Private

	Pull Request

	Contributing guidelines
	Setting things up

	Finding something to work on

	Instructions to submit code

	Architecture
	Django

	Django Rest Framework

	Amazon SQS

	PostgreSQL

	Angular JS

	Architectural decisions
	URL Patterns

	Processing submission messages asynchronously

	Submission Worker

	Directory structure
	Django apps

	Settings

	URLs

	Frontend

	Scripts

	Test Suite

	Management Commands

	Submission
	How is a submission processed?

	How does submission worker function?

	How is submission made?

	Format of submission messages

	How workers process submission message

	Notes

	Migrations
	Creating a migration

	Cite

	Frequently Asked Questions
	Q. How to start contributing?

	Q. What are the technologies that EvalAI uses?

	Q. Where could I learn GitHub Commands?

	Q. Where could I learn Markdown?

	Q. What to do when coverage decreases in your pull request?

	Q. How to setup EvalAI using virtualenv?

	Common Errors during installation

	Glossary
	Challenge

	Challenge host

	Challenge host team

	Challenge phase

	Challenge phase split

	Dataset

	Dataset split

	EvalAI

	Leaderboard

	Phase

	Participant

	Participant team

	Submission

	Submission worker

	Team

	Test annotation file

Indices and tables

	Index

	Module Index

	Search Page

Introduction

EvalAI [http://eval.ai] aims to build a centralized platform to host, participate, and collaborate in Artificial Intelligence (AI) challenges organized around the globe and hope to help in benchmarking progress in AI.

Features

Custom evaluation protocol

We allow creation of an arbitrary number of evaluation phases and dataset splits, compatibility using any programming language, and organizing results in both public and private leaderboards.

Remote evaluation

Certain large-scale challenges need special compute capabilities for evaluation. If the challenge needs extra computational power, challenge organizers can easily add their own cluster of worker nodes to process participant submissions while we take care of hosting the challenge, handling user submissions, and maintaining the leaderboard.

Evaluation inside RL environments

EvalAI [http://eval.ai] lets participants submit code for their agent in the form of docker images which are evaluated against test environments on the evaluation server. During evaluation, the worker fetches the image, test environment, and the model snapshot and spins up a new container to perform evaluation.

CLI support

EvalAI-CLI [https://cli.eval.ai] is designed to extend the functionality of the EvalAI [http://eval.ai] web application to your command line to make the platform more accessible and terminal-friendly.

Portability

EvalAI [http://eval.ai] was designed with keeping in mind scalability and portability of such a system from the very inception of the idea. Most of the components rely heavily on open-source technologies – Docker, Django, Node.js, and PostgreSQL.

Faster evaluation

We warm-up the worker nodes at start-up by importing the challenge code and pre-loading the dataset in memory. We also split the dataset into small chunks that are simultaneously evaluated on multiple cores. These simple tricks result in faster evaluation and reduces the evaluation time by an order of magnitude in some cases.

 Installation

Installation

Dependencies

EvalAI [http://eval.ai] can run on Linux, Cloud, Windows, and macOS platforms. Please install docker [https://docs.docker.com/install/linux/docker-ce/ubuntu/] and docker-compose [https://docs.docker.com/compose/install/] before getting started with the installation of EvalAI.

Installation instructions

Once you have installed docker [https://docs.docker.com/install/linux/docker-ce/ubuntu/] and docker-compose [https://docs.docker.com/compose/install/], please follow these steps to setup EvalAI [http://eval.ai] on your local machine.

	Get the source code on to your machine via git

git clone https://github.com/Cloud-CV/EvalAI.git evalai && cd "$_"

	Build and run the Docker containers. This might take a while.

docker-compose up --build

	That’s it. Open web browser and hit the URL http://127.0.0.1:8888. Three users will be created by default which are listed below:

	User type
	Username
	Password
	Permissions

	Superuser
	admin
	password
	Perform CRUD operations on all tables in the database
 through django admin panel

	Host
	host
	password
	Create and manage challenges

	Participant
	participant
	password
	Participate in different challenges and make submissions

If you are facing any issue during installation, please see our common errors during installation page [https://evalai.readthedocs.io/en/latest/faq(developers).html#common-errors-during-installation].

 Host challenge

Host challenge

EvalAI supports hosting challenges with different configurations. Challenge organizers can choose to customize most aspects of the challenge but not limited to:

	Evaluation metrics

	Language/Framework to implement the metric

	Number of phases and data-splits

	Daily / monthly / overall submission limit

	Number of workers evaluating submissions

	Evaluation on remote machines

	Provide your AWS credentials to host code upload based challenge

	Show / hide error bars on leaderboard

	Public / private leaderboards

	Allow / block certain email addresses to participate in the challenge or phase

	Choose which fields to export while downloading challenge submissions

We have hosted challenges from different domains such as:

	Machine learning (2019 SIOP Machine Learning Competition [https://eval.ai/web/challenges/challenge-page/160/leaderboard/481])

	Deep learning (Visual Dialog Challenge 2019 [https://eval.ai/web/challenges/challenge-page/161/leaderboard/483])

	Computer vision (Vision and Language Navigation [https://eval.ai/web/challenges/challenge-page/97/leaderboard/270])

	Natural language processing (VQA Challenge 2019 [https://eval.ai/web/challenges/challenge-page/163/leaderboard/498])

	Healthcare (fastMRI Image Reconstruction [https://eval.ai/web/challenges/challenge-page/153/leaderboard/447])

	Self-driving cars (CARLA Autonomous Driving Challenge [https://eval.ai/web/challenges/challenge-page/246/leaderboard/817])

We categorize the challenges in two categories:

	Prediction upload based challenges: Participants upload predictions corresponding to ground truth labels in the form of a file (could be any format: json, npy, csv, txt etc.)

Some of the popular prediction upload based challenges that we have hosted are shown below:

 Challenge configuration

Challenge configuration

Following fields are required (and can be customized) in the challenge_config.yml [https://github.com/Cloud-CV/EvalAI-Starters/blob/master/challenge_config.yaml].

	title: Title of the challenge

	short_description: Short description of the challenge (preferably 140 characters max)

	description: Long description of the challenge (use a relative path for the HTML file, e.g. challenge_details/description.html)

	evaluation_criteria: Evaluation criteria and details of the challenge (use a relative path for the HTML file, e.g. challenge_details/evaluation.html)

	terms_and_conditions: Terms and conditions of the challenge (use a relative path for the HTML file, e.g. challenge_details/tnc.html)

	image: Logo of the challenge (use a relative path for the logo in the zip configuration, e.g. images/logo/challenge_logo.jpg). Note: The image must be in jpg, jpeg or png format.

	submission_guidelines: Submission guidelines of the challenge (use a relative path for the HTML file, e.g. challenge_details/submission_guidelines.html)

	evaluation_script: Python script which will decide how to evaluate submissions in different phases (path of the evaluation script file or folder relative to this YAML file. For e.g. evaluation_script/)

	remote_evaluation: True/False (specify whether evaluation will happen on a remote machine or not. Default is False)

	start_date: Start DateTime of the challenge (Format: YYYY-MM-DD HH:MM:SS, e.g. 2017-07-07 10:10:10) in UTC time zone

	end_date: End DateTime of the challenge (Format: YYYY-MM-DD HH:MM:SS, e.g. 2017-07-07 10:10:10) in UTC time zone

	published: True/False (Boolean field that gives the flexibility to publish the challenge once approved by EvalAI admin. Default is False)

	allowed_email_domains: A list of domains allowed to participate in the challenge. Leave blank if everyone is allowed to participate. (e.g. ["domain1.com", "domain2.org", "domain3.in"] Participants with these email domains will only be allowed to participate.)

	blocked_emails_domains: A list of domains not allowed to participate in the challenge. Leave blank if everyone is allowed to participate. (e.g. ["domain1.com", "domain2.org", "domain3.in"] Participants with these email domains will not be allowed to participate.)

	leaderboard:
A leaderboard for a challenge on EvalAI consists of following subfields:

	id: Unique positive integer field for each leaderboard entry

	schema: Schema field contains the information about the rows of the leaderboard. A schema contains two keys in the leaderboard:

	labels: Labels are the header rows in the leaderboard according to which the challenge ranking is done.

	default_order_by: This key decides the default sorting of the leaderboard based on one of the labels defined above.

The leaderboard schema for the sample challenge configuration [https://github.com/Cloud-CV/EvalAI-Starters/blob/master/challenge_config.yaml] looks like this:

leaderboard:
 - id: 1
 schema:
 {
 "labels": ["Metric1", "Metric2", "Metric3", "Total"],
 "default_order_by": "Total",
 }

The above leaderboard schema will look something like this on leaderboard UI:

[image: Random Number Generator Challenge - Leaderboard]

	challenge_phases:

There can be multiple challenge phases [https://evalai.readthedocs.io/en/latest/glossary.html#challenge-phase] in a challenge. A challenge phase in a challenge contains the following subfields:

	id: Unique integer identifier for the challenge phase

	name: Name of the challenge phase

	description: Long description of the challenge phase (set the relative path of the HTML file, e.g. challenge_details/phase1_description.html)

	leaderboard_public: True/False (a Boolean field that gives the flexibility to Challenge Hosts to either make the leaderboard public or private. Default is False)

	is_public: True/False (a Boolean field that gives the flexibility to Challenge Hosts to either hide or show the challenge phase to participants. Default is False)

	is_submission_public: True/False (a Boolean field that gives the flexibility to Challenge Hosts to either make the submissions by default public/private. Note that this will only work when the leaderboard_public property is set to true. Default is False)

	start_date: Start DateTime of the challenge phase (Format: YYYY-MM-DD HH:MM:SS, e.g. 2017-07-07 10:10:10)

	end_date: End DateTime of the challenge phase (Format: YYYY-MM-DD HH:MM:SS, e.g. 2017-07-07 10:10:10)

	test_annotation_file: This file is used for ranking the submission made by a participant. An annotation file can be shared by more than one challenge phase. (Path of the test annotation file relative to this YAML file, e.g. challenge_details/test_annotation.txt)

	codename: Unique id for each challenge phase. Note that the codename of a challenge phase is used to map the results returned by the evaluation script to a particular challenge phase. The codename specified here should match with the codename specified in the evaluation script to perfect mapping.

	max_submissions_per_day: Positive integer which tells the maximum number of submissions per day to a challenge phase.

	max_submissions_per_month: Positive integer which tells the maximum number of submissions per month to a challenge phase.

	max_submissions: a Positive integer that decides the overall maximum number of submissions that can be done to a challenge phase.

	dataset_splits:

Dataset splits define the subset of test-set on which the submissions will be evaluated on. Generally, most challenges have two splits:

	test-dev (Allow participants to make large number of submissions, let them see how they are doing, and let them overfit)

	test-challenge (Allow small number of submissions so that they cannot mimic test-set. Use this split to decide the winners for the challenge)

A dataset split has the following subfields:

	id: Unique integer identifier for the split

	name: Name of the split (it must be unique for every split)

	codename: Unique id for each split. Note that the codename of a dataset split is used to map the results returned by the evaluation script to a particular dataset split in EvalAI’s database. Please make sure that no two dataset splits have the same codename. Again, make sure that the dataset split’s codename match with what is in the evaluation script provided by the challenge host.

	challenge_phase_splits:

A challenge phase split is a relation between a challenge phase and dataset splits for a challenge (many to many relation). This is used to set the privacy of submissions (public/private) to different dataset splits for different challenge phases.

	challenge_phase_id: Id of challenge_phase to map with

	leaderboard_id: Id of leaderboard

	dataset_split_id: Id of dataset_split

	visibility: It will set the visibility of the numbers corresponding to metrics for this challenge_phase_split. Select one of the following positive integers based on the visibility level you want:

	leaderboard_decimal_precision: Positive integer field used for varying the leaderboard decimal precision. Default value is 2.

	is_leaderboard_order_descending: True/False (a Boolean field that gives the flexibility to challenge host to change the default leaderboard sorting order. It is useful in cases where you have error as a metric and want to sort the leaderboard in increasing order of error value. Default is True)

	Visibility
	Description

	1
	Only visible to challenge host

	2
	Only visible to challenge host and participant who made that submission

	3
	Visible to everyone on leaderboard

 Writing Evaluation Script

Writing Evaluation Script

Each challenge has an evaluation script, which evaluates the submission of participants and returns the scores which will populate the leaderboard. The logic for evaluating and judging a submission is customizable and varies from challenge to challenge, but the overall structure of evaluation scripts are fixed due to architectural reasons.

Evaluation scripts are required to have an evaluate() function. This is the main function, which is used by workers to evaluate the submission messages.

The syntax of evaluate function is:

def evaluate(test_annotation_file, user_annotation_file, phase_codename, **kwargs):
 pass

It receives three arguments, namely:

	test_annotation_file: It represents the local path to the annotation file for the challenge. This is the file uploaded by the Challenge host while creating a challenge.

	user_annotation_file: It represents the local path of the file submitted by the user for a particular challenge phase.

	phase_codename: It is the codename of the challenge phase from the challenge configuration yaml [https://github.com/Cloud-CV/EvalAI-Starters/blob/master/challenge_config.yaml]. This is passed as an argument so that the script can take actions according to the challenge phase.

After reading the files, some custom actions can be performed. This varies per challenge.

The evaluate() method also accepts keyword arguments. By default, we provide you metadata of each submission to your challenge which you can use to send notifications to your slack channel or to some other webhook service. Following is an example code showing how to get the submission metadata in your evaluation script and send a slack notification if the accuracy is more than some value X (X being 90 in the example given below).

def evaluate(test_annotation_file, user_annotation_file, phase_codename, **kwargs):

 submission_metadata = kwargs.get("submission_metadata")
 print submission_metadata

 # Do stuff here
 # Set `score` to 91 as an example

 score = 91
 if score > 90:
 slack_data = kwargs.get("submission_metadata")
 webhook_url = "Your slack webhook url comes here"
 # To know more about slack webhook, checkout this link: https://api.slack.com/incoming-webhooks

 response = requests.post(
 webhook_url,
 data=json.dumps({'text': "*Flag raised for submission:* \n \n" + str(slack_data)}),
 headers={'Content-Type': 'application/json'})

 # Do more stuff here

The above example can be modified and used to find if some participant team is cheating or not. There are many more ways for which you can use this metadata.

After all the processing is done, this evaluate() should return an output, which is used to populate the leaderboard. The output should be in the following format:

output = {}
output['result'] = [
 {
 'train_split': {
 'Metric1': 123,
 'Metric2': 123,
 'Metric3': 123,
 'Total': 123,
 }
 },
 {
 'test_split': {
 'Metric1': 123,
 'Metric2': 123,
 'Metric3': 123,
 'Total': 123,
 }
 }
]

return output

Let’s break down what is happening in the above code snippet.

	output should contain a key named result, which is a list containing entries per dataset split that is available for the challenge phase in consideration (in the function definition of evaluate() shown above, the argument: phase_codename will receive the codename for the challenge phase against which the submission was made).

	Each entry in the list should be a dict that has a key with the corresponding dataset split codename (train_split and test_split for this example).

	Each of these dataset split dict contains various keys (Metric1, Metric2, Metric3, Total in this example), which are then displayed as columns in the leaderboard.

 Approve a challenge (for forked version)

Approve a challenge (for forked version)

Note: If you are hosting the challenge on eval.ai [https://eval.ai], then you cannot approve your challenge. It will be approved by EvalAI team [https://eval.ai/team]. You can skip this section.

Once a challenge config has been uploaded, the challenge has to be approved by the EvalAI Admin (i.e. you if you are setting up EvalAI yourself on your server) to make it available to everyone. Please follow the following steps to approve a challenge (if you are):

Let’s assume that we want to approve a challenge with name Random Number Generator Challenge.

Step 1: Approve challenge using django admin

	Login to EvalAI’s django admin panel [http://localhost:8000/api/admin/challenges/challenge/], and you will see the list of challenges

[image: _images/FRi5ofa.png]

	Click on the challenge that you want to approve and scroll to bottom to check the following two fields.

	Approved By Admin

	Publically Available

[image: _images/l7fQrxX.png]

Now, save the challenge. The challenge has been successfully approved by the administrator and is also publicly visible to the users.

Step 2: Reload submission worker

Since you have just approved the challenge, the submission worker has to be reloaded so that it can fetch the evaluation script and other related files for your challenge from the database. Now reload the submission worker using the following command:

Run the following command:

docker-compose restart worker

Submission worker has been successfully reloaded!

Now, the challenge is ready to accept submissions from participants.

If you have issues in hosting a challenge on forked version of EvalAI, please feel free to create an issue on our GitHub Issues Page [https://github.com/Cloud-CV/EvalAI/issues/new].

 Participate in a challenge

Participate in a challenge

You have to create an account on EvalAI [http://eval.ai] and a participant team in order to participate in a challenge.

If you are already familiar with the flow of EvalAI, you may want to skip this section else please follow the following steps to participate in a challenge (VQA Challenge 2017 in this example):

1. Visit eval.ai

Open EvalAI website [https://eval.ai/].

2. Sign up or Log in

Sign Up and fill in your credentials or log in if you have already registered.

After signing up you would be on the dashboard page.

3. Choose challenge

Then, go to challenges section and choose an active challenge.

4. Challenge Page

After reading the challenge instructions on the challenge page, you can participate in the challenge.

5. Create Participant Team

Create a participant team if there isn’t any or you can select from the existing ones.

Click on ‘Participate’ tab after selecting a team.

Tada! you have successfully participated in a challenge.

 Make Submission Public

Make Submission Public

Let’s assume that you want to make your latest submission public in William Challenge.

	Go to My Submissions Tab of the challenge page, select the phase and scroll horizontally.

 Pull Request

Pull Request

Contributing to EvalAI is really easy. Just follow these steps to get started.

Step 1: Fork

	Fork the EvalAI repository from the repository [https://github.com/Cloud-CV/EvalAI].

Step 2: Selecting an issue

	Select a suitable issue that will be easy for you to fix. Moreover, you can also
take the issues based on their labels. All the issues are labelled according to its difficulty.

	After selecting an issue, ask the maintainers of the project to assign it to you and they will assign it based on its availability.

	Once it gets assigned, create a branch [https://git-scm.com/docs/git-checkout] from your fork’s updated master branch using the following command:
git checkout -b branch_name

	Start working on the issue.

Step 3: Committing Your Changes

	After making the changes, you need to add your files to your local git repository.

	To add your files, use the following commands:

	To add only modified files, use git add -u

	To add a new file, use git add file_path_from_local_git_repository

	To add all files, use git add .

	Once you have added your files, you need to commit your changes. Always create a very meaningful commit message related to the changes that you have done. Try to write the commit message in present imperative tense. Also namespace the commit message so that it becomes self-explanatory by just looking at the commit message.
For example,

Docs: Add verbose setup docs for ubuntu

Step 4: Creating a Pull Request [https://help.github.com/articles/about-pull-requests/]

	Before creating a Pull Request, you need to first rebase your branch with the upstream [http://stackoverflow.com/questions/9257533/what-is-the-difference-between-origin-and-upstream-on-github] master.

	To rebase [https://git-scm.com/book/en/v2/Git-Branching-Rebasing] your branch, use following commands:
git fetch upstream
git rebase upstream/master

	After rebasing, push the changes to your forked repository.
git push origin branch_name

	After pushing the code, create a Pull Request.

	When creating a pull request, be sure to add a comment including these [https://help.github.com/articles/closing-issues-via-commit-messages/] keywords, and also mention any maintainer to reviewing it.

Note:

	If you have any doubts, don’t hesitate to ask in the comments. You may also add in any relevant content.

	After the maintainers review your changes, fix the code as suggested. Don’t forget to add, commit, and push your code to the same branch.

Once you have completed the above steps, you have successfully created a Pull Request to EvalAI.

 Contributing guidelines

Contributing guidelines

Thank you for your interest in contributing to EvalAI! Here are a few
pointers on how you can help.

Setting things up

To set up the development environment, follow the instructions in
our README.

Finding something to work on

EvalAI’s issue tracker is good place to start. If you find something
that interests you, comment on the thread and we’ll help get you
started.

Alternatively, if you come across a new bug on the site, please file a
new issue and comment if you would like to be assigned. Existing
issues are tagged with one or more labels, based on the part of the
website it touches, its importance etc., which can help you select
one.

If neither of these seem appealing, please post on our channel and we
will help find you something else to work on.

Instructions to submit code

Before you submit code, please talk to us via the issue tracker so we
know you are working on it.

Our central development branch is development. Coding is done on feature
branches based off of development and merged into it once stable and
reviewed. To submit code, follow these steps:

	Create a new branch off of development. Select a descriptive branch
name.

git fetch upstream
git checkout master
git merge upstream/master
git checkout -b your-branch-name

We highly encourage using black [http://www.github.com/psf/black]
to format your code. It sticks to PEP8 for the most part and is in
line with the rest of the repo. We have already set up pre-commit
hooks [https://git-scm.com/book/en/v2/Customizing-Git-Git-Hooks]
to run black and flake8. To activate the hooks, you just need to run
the following comamnd once:

pre-commit install

	Commit and push code to your branch:

	Commits should be self-contained and contain a descriptive commit
message.

	Please make sure your code is well-formatted and adheres to PEP8
conventions (for Python) and the airbnb style guide (for
JavaScript). For others (Lua, prototxt etc.) please ensure that
the code is well-formatted and the style consistent.

	Please ensure that your code is well tested.

git commit -a -m “{{commit_message}}”
git push origin {{branch_name}}

	Once the code is pushed, create a pull request:

	On your GitHub fork, select your branch and click “New pull
request”. Select “master” as the base branch and your branch in
the “compare” dropdown. If the code is mergeable (you get a
message saying “Able to merge”), go ahead and create the pull
request.

	Check back after some time to see if the Travis checks have
passed, if not you should click on “Details” link on your PR
thread at the right of “The Travis CI build failed”, which will
take you to the dashboard for your PR. You will see what failed /
stalled, and will need to resolve them.

	If your checks have passed, your PR will be assigned a reviewer
who will review your code and provide comments. Please address
each review comment by pushing new commits to the same branch (the
PR will automatically update, so you don’t need to submit a new
one). Once you are done, comment below each review comment marking
it as “Done”. Feel free to use the thread to have a discussion
about comments that you don’t understand completely or don’t agree
with.

	Once all comments are addressed, the reviewer will give an LGTM (‘looks good to me’) and merge the PR.

Congratulations, you have successfully contributed to Project EvalAI!

 Architecture

Architecture

EvalAI helps researchers, students, and data scientists to create, collaborate, and participate in various AI challenges organized around the globe. To achieve this, we leverage some of the best open source tools and technologies.

Django

Django is the heart of the application, which powers our backend. We use Django version 1.11.23.

Django Rest Framework

We use Django Rest Framework for writing and providing REST APIs. Its permission and serializers have helped write a maintainable codebase.

Amazon SQS

We currently use Amazon SQS for queueing submission messages which are then later on processed by a Python worker.

PostgreSQL

PostgreSQL is used as our primary datastore. All our tables currently reside in a single database named evalai

Angular JS

Angular JS is a well-known framework that powers our frontend.

 Architectural decisions

Architectural decisions

This is a collection of records for architecturally significant decisions.

URL Patterns

We follow a very basic, yet strong convention for URLs, so that our rest APIs are properly namespaced. First of all, we rely heavily on HTTP verbs to perform CRUD actions.

For example, to perform CRUD operation on Challenge Host Model, the following URL patterns will be used.

	GET /hosts/challenge_host_team - Retrieves a list of challenge host teams

	POST /hosts/challenge_host_team - Creates a new challenge host team

	GET /hosts/challenge_host_team/<challenge_host_team_id> - Retrieves a specific challenge host team

	PUT /hosts/challenge_host_team/<challenge_host_team_id> - Updates a specific challenge host team

	PATCH /hosts/challenge_host_team/<challenge_host_team_id> - Partially updates a specific challenge host team

	DELETE /hosts/challenge_host_team/<challenge_host_team_id> - Deletes a specific challenge host team

Also, we have namespaced the URL patterns on a per-app basis, so URLs for Challenge Host Model, which is in the hosts app, will be

/hosts/challenge_host_team

This way, one can easily identify where a particular API is located.

We use underscore _ in URL patterns.

Processing submission messages asynchronously

When a submission message is made, a REST API is called which saves the data related to the submission in the database. A submission involves the processing and evaluation of input_file. This file is used to evaluate the submission and then decide the status of the submission, whether it is FINISHED or FAILED.

One way to process the submission is to evaluate it as soon as it is made, hence blocking the participant’s request. Blocking the request here means to send the response to the participant only when the submission has been made and its output is known. This would work fine if the number of the submissions made is very low, but this is not the case.

Hence we decided to process and evaluate submission message in an asynchronous manner. To process the messages this way, we need to change our architecture a bit and add a Message Framework, along with a worker so that it can process the message.

Out of all the awesome messaging frameworks available, we have chosen Amazon Simple Queue Service (SQS) because it can support decoupled environments. It allows developers to focus on application development, rather than creating their own sophisticated message-based applications. It also eliminates queuing management tasks, such as storage. SQS also works with AWS resources, so you can use it to make reliable and scalable applications on top of an AWS infrastructure.

For the worker, we went ahead with a normal python worker, which simply runs a process and loads all the required data in its memory. As soon as the worker starts, it listens on a SQS queue named evalai_submission_queue for new submission messages.

Submission Worker

The submission worker is responsible for processing submission messages. It listens on a queue named evalai_submission_queue, and on receiving a message for a submission, it processes and evaluates the submission.

One of the major design changes that we decided to implement in the submission worker was to load all the data related to the challenge in the worker’s memory, instead of fetching it every time a new submission message arrives. So the worker, when starting, fetches the list of active challenges from the database and then loads it into memory by maintaining the map EVALUATION_SCRIPTS on challenge id. This was actually a major performance improvement.

Another major design change that we incorporated here was to dynamically import the challenge module and to load it in the map instead of invoking a new python process every time a submission message arrives. So now whenever a new message for a submission is received, we already have its corresponding challenge module being loaded in a map called EVALUATION_SCRIPTS, and we just need to call

EVALUATION_SCRIPTS[challenge_id].evaluate(*params)

This was again a major performance improvement, which saved us from the task of invoking and managing Python processes to evaluate submission messages. Also, invoking a new python process every time for a new submission would have been really slow.

 Directory structure

Directory structure

Django apps

EvalAI is a Django-based application, hence it leverages the concept of Django apps to properly namespace the functionalities. All the apps can be found in the apps directory situated in the root folder.

Some important apps along with their main uses are:

	Challenges

This app handles all the workflow related to creating, modifying, and deleting challenges.

	Hosts

This app is responsible for providing functionalities to the challenge hosts/organizers.

	Participants

This app serves users who want to take part in any challenge. It contains code for creating a Participant Team, through which they can participate in any challenge.

	Jobs

One of the most important apps, responsible for processing and evaluating submissions made by participants. It contains code for creating a submission, changing the visibility of the submission and populating the leaderboard for any challenge.

	Web

This app serves some basic functionalities like providing support for contact us or adding a new contributor to the team, etc.

	Accounts

As the name indicates, this app deals with storing and managing data related to user accounts.

	Base

A placeholder app which contains the code that is used across various other apps.

Settings

Settings are used across the backend codebase by Django to provide config values on a per-environment basis. Currently, the following settings are available:

	dev

Used in development environment

	testing

Used whenever test cases are run

	staging

Used on staging server

	production

Used on production server

URLs

The base URLs for the project are present in evalai/urls.py. This file includes URLs of various applications, which are also namespaced by the app name. So URLs for the challenges app will have its app namespace in the URL as challenges. This actually helps us separate our API based on the app.

Frontend

The whole codebase for the frontend resides in a folder named frontend in the root directory

Scripts

Scripts contain various helper scripts, utilities, python workers. It contains the following folders:

	migration

Contains some of the scripts which are used for one-time migration or formatting of data.

	tools

A folder for storing helper scripts, e.g. a script to fetch pull request

	workers

One of the main directories, which contains the code for submission worker. Submission worker is a normal python worker which is responsible for processing and evaluating submission of a user. The command to start a worker is:

python scripts/workers/submission_worker.py

Test Suite

All of the codebase related to testing resides in tests folder in the root directory. In this directory, tests are namespaced according to the app, e.g. tests for challenges app lives in a folder named challenges.

Management Commands

To perform certain actions like seeding the database, we use Django management commands. Since the management commands are common throughout the project, they are present in base application directory. At the moment, the only management command is seed, which is used to populate the database with some random values. The command can be invoked by calling

python manage.py seed

 Submission

Submission

How is a submission processed?

We are using REST APIs along with Queue based architecture to process submissions. When a participant makes a submission for a challenge, a REST API with URL pattern jobs:challenge_submission is called. This API does the task of creating a new entry for submission model and then publishes a message to exchange evalai_submissions with a routing key of submission.*.*.

User Submission --> API --> Publish --> SQS Queue --> Submission
 message worker(s)

Exchange receives the message and then routes it to the queue submission_task_queue. At the end of submission_task_queue are workers (scripts/workers/submission_worker.py) which processes the submission message.

The worker can be run with

assuming the current working directory is where manage.py lives
python scripts/workers/submission_worker.py

How does submission worker function?

Submission worker is a python script which mostly runs as a daemon on a production server and simply acts as a python process in a development environment. To run submission worker in a development environment:

python scripts/workers/submission_worker.py

Before a worker fully starts, it does the following actions:

	Creates a new temporary directory for storing all its data files.

	Fetches the list of active challenges from the database. Active challenges are published challenges whose start date is less than present time and end date greater than present time. It loads all the challenge evaluation scripts in a variable called EVALUATION_SCRIPTS, with the challenge id as its key. The maps looks like this:

EVALUATION_SCRIPTS = {
 <challenge_pk> : <evalutaion_script_loaded_as_module>,

}

	Creates a connection with SQS queue by using the AWS supplied credentials as environment variables.

	After the connection is successfully created, creates an exchange with the name evalai_submissions
and two queues, one for processing submission message namely submission_task_queue, and other for getting add challenge message.

	submission_task_queue is then bound with the routing key of submission.*.* and add challenge message queue is bound with a key of challenge.add.*
Whenever a queue is bound to a exchange with any key, it will route the message to the corresponding queue as soon as the exchange receives a message with a key.

	Binding to any queue is also accompanied with a callback which basically takes a function as an argument. This function specifies what should be done when the queue receives a message.

e.g. submission_task_queue is using process_submission_callback as a function, which means that when a message is received in the queue, process_submission_callback will be called with the message passed as an argument.

Expressing it informally it will be something like

Queue: Hey Exchange, I am submission_task_queue. I will be listening to messages from you on binding key of submission.*.*

Exchange: Hey Queue, Sure! When I receive a message with a routing key of submission.*.*, I will give it to you

Queue: Thanks a lot.

Queue: Hey Worker, Just for the record, when I receive a new message for submission, I want process_submission_callback to be called. Can you please make a note of it?

Worker: Sure Queue, I will invoke process_submission_callback whenever you receive a new message.

When a worker starts, it fetches active challenges from the database and then loads all the challenge evaluation scripts in a variable called EVALUATION_SCRIPTS, with challenge id as its key. The map would look like

EVALUATION_SCRIPTS = {
 <challenge_pk> : <evalutaion_script_loaded_as_module>,

}

After the challenges are successfully loaded, it creates a connection with the SQS queue evalai_submission_queue and listens to it for new submissions.

How is submission made?

When the user makes a submission on the frontend, the following actions happen sequentially

	As soon as the user submits a submission, a REST API with the URL pattern jobs:challenge_submission is called.

	This API fetches the challenge and its corresponding challenge phase.

	This API then checks if the challenge is active and challenge phase is public.

	It fetches the participant team’s ID and its corresponding object.

	After all these checks are complete, a submission object is saved. The saved submission object includes participant team id and challenge phase id and username of the participant creating it.

	At the end, a submission message is published to exchange evalai_submissions with a routing key of submission.*.*.

Format of submission messages

The format of the message is

{
 "challenge_id": <challenge_pk_here>,
 "phase_id": <challenge_phase_pk_here>,
 "submission_id": <submission_pk_here>
}

This message is published with a routing key of submission.*.*

How workers process submission message

Upon receiving a message from submission_task_queue with a binding key of submission.*.*, process_submission_callback is called. This function does the following:

	It fetches the challenge phase and submission object from the database using the challenge phase id and submission id received in the message.

	It then downloads the required files like input_file, etc. for submission in its computation directory.

	After this, the submission is run. Submission is initially marked in RUNNING state. The evaluate function of EVALUATION_SCRIPTS map with key of the challenge id is called. The evaluate function takes in the annotation file path, the user annotation file path, and the challenge phase’s code name as arguments. Running a submission involves temporarily updating stderr and stdout to different locations other than standard locations. This is done so as to capture the output and any errors produced when running the submission.

	The output from the evaluate function is stored in a variable called submission_output. Currently, the only way to check for the occurrence of an error is to check if the key result exists in submission_output.

	If the key does not exist, then the submission is marked as FAILED.

	If the key exists, then the variable submission_output is parsed and DataSetSplit objects are created. LeaderBoardData objects are also created (in bulk) with the required parameters. Finally, the submission is marked as FINISHED.

	The value in the temporarily updated stderr and stdout are stored in files named stderr.txt and stdout.txt which are then stored in the submission instance.

	Finally, the temporary computation directory allocated for this submission is removed.

Notes

	REST API with url pattern jobs:challenge_submission. Here jobs is application namespace and challenge_submission is instance namespace. You can read more about url namespace [https://docs.djangoproject.com/en/1.11/topics/http/urls/#url-namespaces]

 Migrations

Migrations

Migrations are Django’s way of propagating changes you make to your models (adding a field, deleting a model, etc.) into your database schema. They’re designed to be mostly automatic, but you’ll need to know when to make migrations, when to run them, and the common problems you might run into.
- Django Migration Docs [https://docs.djangoproject.com/en/1.10/topics/migrations/#module-django.db.migrations]

Creating a migration

	We recommend you to create migrations per app, where the changes are only about a single issue or feature.

migration only for jobs app
python manage.py makemigrations jobs

	Always create named migrations. You can name migrations by passing -n or --name argument

python manage.py makemigrations jobs -n=execution_time_limit
or
python manage.py makemigrations jobs --name=execution_time_limit

	While creating migrations on local environment, don’t forget to add development settings.

python manage.py makemigrations

The following is an example of a complete named migration for the jobs app, wherein a execution time limit field is added to the Submission model:

python manage.py makemigrations jobs --name=execution_time_limit

	Files create after running makemigrations should be committed along with other files

	While creating a migration for your concerned change, it may happen that some other changes are also there in the migration file. Like adding a execution_time_limit field on Submission model also brings in the change for when_made_public being added. In that case, open an new issue [https://github.com/Cloud-CV/EvalAI/issues/new] and clearly mention the issue over there. If possible fix the issue yourself, by opening a new branch and creating migrations only for the concerned part. The idea here is that a commit should only include its concerned migration changes and nothing else.

 Cite

Cite

If you are using [EvalAI] for hosting challenges, please cite the following technical report:

@article{EvalAI,
 title = {EvalAI: Towards Better Evaluation Systems for AI Agents},
 author = {Deshraj Yadav and Rishabh Jain and Harsh Agrawal and Prithvijit
 Chattopadhyay and Taranjeet Singh and Akash Jain and Shiv Baran
 Singh and Stefan Lee and Dhruv Batra},
 year = {2019},
 volume = arXiv:1902.03570
}

 Frequently Asked Questions

Frequently Asked Questions

Q. How to start contributing?

EvalAI’s issue tracker is good place to start. If you find something that interests you, comment on the thread and we’ll help get you started.
Alternatively, if you come across a new bug on the site, please file a new issue and comment if you would like to be assigned. Existing issues are tagged with one or more labels, based on the part of the website it touches, its importance etc., which can help you select one.

Q. What are the technologies that EvalAI uses?

Please refer to Technologies Used [https://evalai.readthedocs.io/en/latest/architecture.html]

Q. Where could I learn GitHub Commands?

Refer to GitHub Guide [https://help.github.com/articles/git-and-github-learning-resources/].

Q. Where could I learn Markdown?

Refer to Markdown Guide [https://guides.github.com/features/mastering-markdown/].

Q. What to do when coverage decreases in your pull request?

Coverage decreases when the existing test cases don’t test the new code you wrote. If you click coverage, you can see exactly which all parts aren’t covered and you can write new tests to test the parts.

Q. How to setup EvalAI using virtualenv?

We have removed the documentation for setting up using virtual environment since the project has grown and different developers face different dependency issues. We recommend to setup EvalAI using docker based environment.

Common Errors during installation

Q. While using pip install -r dev/requirement.txt

 Writing manifest file 'pip-egg-info/psycopg2.egg-info/SOURCES.txt'
 Error: You need to install postgresql-server-dev-X.Y for building a server-side extension or
 libpq-dev for building a client-side application.
 --
 Command "python setup.py egg_info" failed with error code 1 in /tmp/pip-build-qIjU8G/psycopg2/

Use the following commands in order to solve the error:

	sudo apt-get install postgresql

	sudo apt-get install python-psycopg2

	sudo apt-get install libpq-dev

Q. While using pip install -r dev/requirement.txt

Command “python setup.py egg_info” failed with error code 1 in
/private/var/folders/c7/b45s17816zn_b1dh3g7yzxrm0000gn/T/pip-build- GM2AG/psycopg2/

Firstly check that you have installed all the mentioned dependencies.
Then, Upgrade the version of postgresql to 10.1 in order to solve it.

Q. Getting an import error

Couldn't import Django,"when using command python manage.py migrate

Firstly, check that you have activated the virtualenv.
Install python dependencies using the following commands on the command line

cd evalai
pip install -r requirements/dev.txt

Q. Getting Mocha Error

Can not load reporter “mocha”,it is not registered

Uninstall karma and then install

npm uninstall -g generator-karma && npm install -g generator-angular.

Q. While trying to execute bower install

bower: command not found

Execute the following command first :

npm install -g bower

Q. While trying to execute gulp dev:runserver

gulp: command not found

Execute the following command first

npm install -g gulp-cli

Q. While executing gulp dev:runserver

events.js:160
throw er; // Unhandled 'error' event
^
Error: Gem sass is not installed.

Execute the following command first :

gem install sass

Q. While trying to install npm config set proxy http://proxy:port on Ubuntu, I get the following error:

ubuntu@ubuntu-Inspiron-3521:~/Desktop/Python-2.7.14$ npm install -g angular-cli
npm ERR! Linux 4.4.0-21-generic
npm ERR! argv "/usr/bin/nodejs" "/usr/bin/npm" "install" "-g" "angular-cli"
npm ERR! node v4.2.6
npm ERR! npm v3.5.2
npm ERR! code ECONNRESET

npm ERR! network tunneling socket could not be established, cause=getaddrinfo ENOTFOUND proxy proxy:80
npm ERR! network This is most likely not a problem with npm itself
npm ERR! network and is related to network connectivity.
npm ERR! network In most cases you are behind a proxy or have bad network settings.
npm ERR! network
npm ERR! network If you are behind a proxy, please make sure that the
npm ERR! network 'proxy' config is set properly. See: 'npm help config'

npm ERR! Please include the following file with any support request:
npm ERR! /home/ubuntu/Desktop/Python-2.7.14/npm-debug.log

To solve, execute the following commands:

	npm config set registry=registry.npmjs.org

If the above does not work, try deleting them by following commands:

	npm config delete proxy

	npm config delete https-proxy

Then, start the installation process of frontend once more.

Q. While using docker, I am getting the following error on URL http://localhost:8888/:

Cannot Get \

Try removing the docker containers and then building them again.

Q. Getting the following error while running python manage.py seed:

Starting the database seeder. Hang on... Exception while running run() in 'scripts.seed' Database successfully seeded

Change the python version to 2.7.x . The problem might be because of the python 3.0 version.

Q. Getting the following error while executing command createdb evalai -U postgres:

createdb: could not connect to database template1: FATAL: Peer authentication failed for user "postgres"

Try creating a new user and then grant all the privileges to it and then create a db.

Q. Getting the following error while executing npm install:

npm WARN generator-angular@0.16.0 requires a peer of generator-
karma@>=0.9.0 but none was installed.

Uninstall and then install karma again and also don’t forget to clean the global as well as project npm cache. Then try again the step 8.

Q. While running the unit tests, I am getting the error similar to as shown below:

________________ ERROR collecting tests/unit/web/test_views.py _________________
import file mismatch:
imported module 'tests.unit.web.test_views' has this __file__ attribute:
 /path/to/evalai/tests/unit/web/test_views.py
which is not the same as the test file we want to collect:
 /code/tests/unit/web/test_views.py
HINT: remove __pycache__ / .pyc files and/or use a unique basename for your test file modules

It appears that you are trying to run pytest in a docker container. To fix this, delete the __pycache__ and all *.pyc files using the following command:

find . | grep -E "(__pycache__|\.pyc|\.pyo$)" | xargs rm -rf

Q. Getting the following error:

ERROR: for db Cannot start service db: driver failed programming external connectivity on endpoint evalai_db_1 (2163096de9aac6561b4f699bb1049acd0ce881fbaa0da28e47cfa9ca0ee1199f): Error starting userland proxy: listen tcp 0.0.0.0:5432: bind: address already in use

The following solution only works on Linux.

Execute :
sudo netstat -lpn |grep :5432

The output of the above would be in the following form:

tcp 0 0 127.0.0.1:5432 0.0.0.0:* LISTEN 25273/postgres

Execute the following command:

sudo kill 25273 ## This would vary and you can change with the output in the first step

Q. Getting the following error when using Docker:

ERROR : Version in "./docker-compose.yml" is unsupported. You might be seeing this error because you are using wrong Compose file version.

Since, the version of compose file is 3. You might be using a docker version which is not compatible. You can upgrade your docker engine and try again.

Q. Getting the following error while running python manage.py runserver --settings=settings.dev:

Starting the database seeder. Hang on...
Are you sure you want to wipe the existing development database and reseed it? (Y/N)
Exception while running run() in 'scripts.seed'

Try clearing the postgres database manually and try again.

Q. Getting the following error while executing gulp dev:runserver:

/usr/lib//nodejs/gulp//bin/gulp.js:132
	gulpInst.start.apply(gulpInst, toRun)l
				 ^
TypeError: Cannot read properly 'apply of undefined'

Execute the following command:

rm -rf node_modules/
rm -rf bower_components
npm install
bower install

Q. While trying to build EvalAI from the master branch and run the command docker-compose up:

ERROR: Service 'celery' failed to build: pull access denied for evalai_django, repository does not exist or may require 'docker login': denied: requested access to the resource is denied

Please make sure to clone EvalAI in its default directory with name evalai. This happens because the parent directory changes the name of docker images.
For instance, the image evalai_django gets renamed to evalai_dev_django if your directory is renamed to EvalAI_dev.

 Glossary

Glossary

Challenge

An event, run by an institute or organization, wherein a number of researchers, students, and data scientists participate and compete with each other over a period of time. Each challenge has a start time and generally an end time too.

Challenge host

A member of the host team who organizes a challenge. In our system, it is a form of representing a user. This user can be in the organizing team of many challenges, and hence for each challenge, its challenge host will be different.

Challenge host team

A group of challenge hosts who organizes a challenge. They are identified by a unique team name.

Challenge phase

A challenge phase represents a distinct stage of the challenge. Over a period of time, challenge organizers have started to use the challenge phase as a way to:

	Decide when to evaluate submissions on a subset of the test-set or when to evaluate on the whole test-set (for e.g, VQA Challenge 2019 [https://eval.ai/web/challenges/challenge-page/163/overview])

	Use different challenge phases as different tracks of the same challenge (for e.g., CARLA Autonomous Driving Challenge [https://eval.ai/web/challenges/challenge-page/246/phases])

Challenge phase split

A challenge phase split is the relation between a challenge phase and dataset splits for a challenge with a many-to-many relation. This is used to set the privacy of submissions (public/private) to different dataset splits for different challenge phases.

Dataset

A dataset in EvalAI is the main entity in which an AI challenge is based on. Participants are expected to make submissions corresponding to different splits of the corresponding dataset.

Dataset split

A dataset is generally divided into different parts called dataset split. Generally, a dataset has three different splits:

	Training set

	Validation set

	Test set

EvalAI

EvalAI is an open-source web platform that aims to be the state of the art in AI. Its goal is to help AI researchers, practitioners, and students to host, collaborate, and participate in AI challenges organized around the globe.

Leaderboard

The leaderboard can be defined as a scoreboard listing the names of the teams along with their current scores. Currently, each challenge has its own leaderboard.

Phase

A challenge can be divided into many phases (or challenge phases). A challenge phase can have the same or different start and end date than the challenge start and end date.

Participant

A member of the team competing against other teams for any particular challenge. It is a form of representing a user. A user can participate in many challenges, hence for each challenge, its participant entry will be different.

Participant team

A group of one or more participants who are taking part in a challenge. They are identified uniquely by a team name.

Submission

A way of submitting your results to the platform, so that it can be evaluated and ranked amongst others. A submission can be public or private, depending on the challenge.

Submission worker

A python script which processes submission messages received from a queue. It does the heavy lifting task of receiving a submission, performing mandatory checks, and then evaluating the submission and updating its status in the database.

Team

A model, present in web app, which helps CloudCV register new contributors as a core team member or simply an open source contributor.

Test annotation file

This is generally a file uploaded by a challenge host and is associated with a challenge phase. This file is used for ranking the submission made by a participant. An annotation file can be shared by more than one challenge phase. In the codebase, this is present as a file field attached to challenge phase model.

 Index

Index

 Editing Evaluation Script

Editing Evaluation Script

Each prediction upload challenge has an evaluation script, which evaluates the submission of participants and returns the scores which will populate the leaderboard. The logic for evaluating a submission is customizable and varies from challenge to challenge.

When setting up a new challenge, hosts need to test multiple versions of evaluation script on EvalAI. To test multiple versions of evaluation script host can update the evaluation script of existing challenge without uploading a whole new challenge configuration.

To edit the evaluation script for existing challenge please follow the following steps:

1. Go to the challenge page

Go to hosted challenges and select the challenge to update evaluation script

2. Navigate to Evaluation criteria tab

Select the Evaluation criteria tab and click on ‘upload’ button

3. Update the evaluation script

Upload the latest evaluation script and click on ‘Submit’ button to update the evaluation script

Tada! you have successfully updated the evaluation script for a challenge. The evaluation workers for the challenge will be restarted automatically to pick up the latest evaluation script. Please wait for a minimum of 10 minutes for the workers to restart.

 Setup challenge using github

Setup challenge using github

	Use EvalAI-Starters [https://github.com/Cloud-CV/EvalAI-Starters] template to start. See this [https://docs.github.com/en/free-pro-team@latest/github/creating-cloning-and-archiving-repositories/creating-a-repository-from-a-template] on how to use a repository as template.

_static/img/evalai_logo.png
EvalAl

_static/img/evaluation_criteria_tab.png
ZS Dashboard Documentation Discuss Hi host Logout

@

il
oo Random Number Generator Challenge » «
Organized by: Wallaceton Host Team Toadle
' Published ® ! gg)
Participation
—_ Starts on: Jan 1,2019 5:30:.00 AM ¢*
All Challenges Ends on: Jun 1,2099 5:29:50 AM ¢

i Overview [l Evaluation 1 Phases & Submit @ My Submissions i= All Submissions |#* Leaderboard % Manage

—

Hosted Challenges

4 Evaluation Criteria & edit

Create Challenge "Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim veniam,
quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in voluptate velit esse cillum
e dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum"

[]

Participant Teams

00

(]

[)
Host Teams

Terms and Conditions & edit

Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua. Ut enim ad
minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat. Duis aute irure dolor in reprehenderit in
voluptate velit esse cillum dolore eu fugiat nulla pariatur. Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt
mollit anim id est laborum.

_static/img/edit_evaluation_script.png
M Inbox (310) - ramramrakhya X Evaluation - EvalAl X @ Log in | Django site admin X +

& C @ localhost @ Incognito

A Dashboard Documentation Discuss Hi host

Edit Evaluation Script

Upload File

_static/img/evalai-paper.jpg
EE

_static/img/leaderboard.png
EvalAl

Random Number Generator Challenge
Organized by: East Victorberg Host Team

i Overview Ll Evaluation 1 Phases (&) Participate = Leaderboard

Please select from following phases

Phase: Test Phase, Split: Train Split v
Rank < Participant Team < Metric1 < Metric2 <
1 Anthonybury Participant Team 26.00 26.00

2 Test Participant Team 39.00 19.00

Metric3 <

8.00

53.00

Total <

70.00

0.00

Last Submission at %

2 minutes ago

38 seconds ago

_static/img/my_submission.png
William Challenge

Organized by: West Nathan Host Team
Starts on: Sep 12,2020 11:47:52 PM
Ends on: May 5,2022 11:47:52 PM

" 1 £ @ My Submissions | L

My Submissions
My Participated Team: Lake Brittany Participant Team
Gina Phase v

Total Submissions: [

Execution time (sec.) ~ Submitted file Result file Stdoutfile Stderr file Submitted at Show on leaderboard Edit
0.000004 @ Link None None None Dec 21,2020 10:47:53 PM [m} rd
0.000008 @ Link None None None Dec 21,2020 10:47:53 PM N s

0.000004 @ Link None None None Dec 21,2020 10:47:53 PM v s

_static/img/hosted_challenge_page.png
ZS Dashboard Documentation Discuss Hi host Logout

@

i ';L'Id Random Number Generator Challenge » «
ashboar:
Organized by: Wallaceton Host Team Toggle
' Published @ N Participation
Ad Starts on: Jan 1, 2019 5:30:00 AM &'
All Challenges Ends on: Jun 1, 2099 5:29:59 AM ¢*

i Overview 1 Phases £ Submit @ My Submissions i= All Submissions |#* Leaderboard % Manage

—

Hosted Challenges

A

Challenge Overview & edit

Create Challenge "Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo
inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit,
oo sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet,
'.." consectetur, adipisci velit, sed quia non numguam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim ad
Participant Teams minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
eprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?”
S0% "Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium, totam rem aperiam, eaque ipsa quae ab illo
Host:ams inventore veritatis et quasi architecto beatae vitae dicta sunt explicabo. Nemo enim ipsam voluptatem quia voluptas sit aspernatur aut odit aut fugit,
sed quia consequuntur magni dolores eos qui ratione voluptatem sequi nesciunt. Neque porro quisquam est, qui dolorem ipsum quia dolor sit amet,

consectetur, adi

pisci velit, sed quia non numguam eius modi tempora incidunt ut labore et dolore magnam aliquam quaerat voluptatem. Ut enim ad
minima veniam, quis nostrum exercitationem ullam corporis suscipit laboriosam, nisi ut aliquid ex ea commodi consequatur? Quis autem vel eum iure
eprehenderit qui in ea voluptate velit esse quam nihil molestiae consequatur, vel illum qui dolorem eum fugiat quo voluptas nulla pariatur?”

_static/img/kaggle_comparison.png
Wait, isn't this just like Kaggle?

EvalAl

Challenge Platform

Generic Challenges

Custom Evaluation
Protocols and Phases

Open Source

Portable Hosting

_static/img/my_submission_made_private.png
William Challenge

Organized by: West Nathan Host Team
Starts on: Sep 12,2020 11:47:52 PM
Ends on: May 5,2022 11:47:52 PM

" 1 £ @My Submissions e

My Submissions
My Participated Team: Lake Brittany Participant Team
Gina Phase v

Total Submissions: [

Execution time (sec.) ~ Submitted file Result file Stdoutfile Stderr file Submitted at Show on leaderboard Edit
0.000004 @ Link None None None Dec 21,2020 10:47:53 PM [m} rd
0.000008 @ Link None None None Dec 21,2020 10:47:53 PM N s

0.000004 @ Link None None None Dec 21,2020 10:47:53 PM v s

_static/img/my_submission_made_public.png
William Challenge

Organized by: West Nathan Host Team
Starts on: Sep 12,2020 11:47:52 PM
Ends on: May 5,2022 11:47:52 PM

" 1 £ @My Submissions e

My Submissions
My Participated Team: Lake Brittany Participant Team
Gina Phase v

Total Submissions: [

Execution time (sec.) ~ Submitted file Result file Stdoutfile Stderr file Submitted at Show on leaderboard Edit
0.000004 @ Link None None None Dec 21,2020 10:47:53 PM N s
0.000008 @ Link None None None Dec 21,2020 10:47:53 PM N s

0.000004 @ Link None None None Dec 21,2020 10:47:53 PM v s

_static/img/teaser.png
Prediction

Feedback
Human-in-the-loop
Evaluation

Faster Evaluation

iﬁ%’

docker

—~ State, Reward
—_—
—

% Action

Evaluation inside
RL Environments

A
(@)

X
EvalAl

(8]
<— fldi

Predictions

Private Server

Remote Evaluation

S,

]ava

T

Custom Protocols

aws

N7

O

Google Cloud Platform

AAzu re

Portable

_static/img/vqa_leaderboard.png
VOA

[l Evaluation 1 Phases

i Overview

Please select from following phases

Real test2017 (oe)

Rank

Participant Team

LV_NUS

Adelaide-Teney ACRV MSR

HDU-USYD-UNCC

Athena

UPMC-LIP6

VQA Real Image Challenge (Open-Ended) 2017
Organized by: VQA Team

(®) Participate £= Leaderboard

yes/no

81.94

85.80

84.50

82.50

82.07

number

49.64

47.58

45.39

4419

41.06

other

63.65

60.21

59.01

59.97

5712

overall

69.71

69.44

68.09

67.59

65.71

nav.xhtml

 Table of Contents

 		
 Welcome to EvalAI’s documentation!

 		
 Introduction

 		
 Features

 		
 Custom evaluation protocol

 		
 Remote evaluation

 		
 Evaluation inside RL environments

 		
 CLI support

 		
 Portability

 		
 Faster evaluation

 		
 Installation

 		
 Dependencies

 		
 Installation instructions

 		
 Host challenge

 		
 Host challenge using github

 		
 Step 1: Use template

 		
 Step 2: Generate github token

 		
 Step 3: Setup host configuration

 		
 Step 4: Setup automated update push

 		
 Step 5: Update challenge details

 		
 Step 6: Push changes to the challenge

 		
 Step 7: Verify challenge

 		
 Host Prediction upload based challenge

 		
 Step 1: Setup challenge configuration

 		
 Step 2: Edit challenge configuration

 		
 Step 3: Edit evaluation script

 		
 Step 4: Edit challenge HTML templates

 		
 Host Code upload based challenge

 		
 Step 1: Setup challenge configuration

 		
 Step 2: Edit challenge configuration

 		
 Step 3: Edit evaluation script

 		
 Step 4: Edit challenge HTML templates

 		
 Challenge configuration

 		
 Writing Evaluation Script

 		
 Approve a challenge (for forked version)

 		
 Step 1: Approve challenge using django admin

 		
 Step 2: Reload submission worker

 		
 Participate in a challenge

 		
 1. Visit eval.ai

 		
 2. Sign up or Log in

 		
 3. Choose challenge

 		
 4. Challenge Page

 		
 5. Create Participant Team

 		
 Make Submission Public

 		
 Make Submission Private

 		
 Pull Request

 		
 Contributing guidelines

 		
 Setting things up

 		
 Finding something to work on

 		
 Instructions to submit code

 		
 Architecture

 		
 Django

 		
 Django Rest Framework

 		
 Amazon SQS

 		
 PostgreSQL

 		
 Angular JS

 		
 Architectural decisions

 		
 URL Patterns

 		
 Processing submission messages asynchronously

 		
 Submission Worker

 		
 Directory structure

 		
 Django apps

 		
 Settings

 		
 URLs

 		
 Frontend

 		
 Scripts

 		
 Test Suite

 		
 Management Commands

 		
 Submission

 		
 How is a submission processed?

 		
 How does submission worker function?

 		
 How is submission made?

 		
 Format of submission messages

 		
 How workers process submission message

 		
 Notes

 		
 Migrations

 		
 Creating a migration

 		
 Cite

 		
 Frequently Asked Questions

 		
 Q. How to start contributing?

 		
 Q. What are the technologies that EvalAI uses?

 		
 Q. Where could I learn GitHub Commands?

 		
 Q. Where could I learn Markdown?

 		
 Q. What to do when coverage decreases in your pull request?

 		
 Q. How to setup EvalAI using virtualenv?

 		
 Common Errors during installation

 		
 Q. While using pip install -r dev/requirement.txt

 		
 Q. While using pip install -r dev/requirement.txt

 		
 Q. Getting an import error

 		
 Q. Getting Mocha Error

 		
 Q. While trying to execute bower install

 		
 Q. While trying to execute gulp dev:runserver

 		
 Q. While executing gulp dev:runserver

 		
 Q. While trying to install npm config set proxy http://proxy:port on Ubuntu, I get the following error:

 		
 Q. While using docker, I am getting the following error on URL http://localhost:8888/:

 		
 Q. Getting the following error while running python manage.py seed:

 		
 Q. Getting the following error while executing command createdb evalai -U postgres:

 		
 Q. Getting the following error while executing npm install:

 		
 Q. While running the unit tests, I am getting the error similar to as shown below:

 		
 Q. Getting the following error:

 		
 Q. Getting the following error when using Docker:

 		
 Q. Getting the following error while running python manage.py runserver –settings=settings.dev:

 		
 Q. Getting the following error while executing gulp dev:runserver:

 		
 Q. While trying to build EvalAI from the master branch and run the command docker-compose up:

 		
 Glossary

 		
 Challenge

 		
 Challenge host

 		
 Challenge host team

 		
 Challenge phase

 		
 Challenge phase split

 		
 Dataset

 		
 Dataset split

 		
 EvalAI

 		
 Leaderboard

 		
 Phase

 		
 Participant

 		
 Participant team

 		
 Submission

 		
 Submission worker

 		
 Team

 		
 Test annotation file

_static/img/my_submission_public.png
William Challenge

Organized by: West Nathan Host Team
Starts on: Sep 12,2020 11:47:52 PM
Ends on: May 5,2022 11:47:52 PM

" 1 £ @My Submissions e

My Submissions
My Participated Team: Lake Brittany Participant Team
Gina Phase v

Total Submissions: [

Execution time (sec.) ~ Submitted file Result file Stdoutfile Stderr file Submitted at Show on leaderboard| Edit
0.000004 @ Link None None None Dec 21,2020 10:47:53 PM [m} rd
0.000008 @ Link None None None Dec 21,2020 10:47:53 PM N s
0.000004 @ Link None None None Dec 21,2020 10:47:53 PM N s

_static/img/prediction-upload-challenges.png
V(A

VQA Challenge 2019 Vision and Language fastMRI Image Reconstruction
Navigation

_images/l7fQrxX.png
Publicly Available
Enable forum

(") Anonymous leaderboard

Participant teams: Lake Antonio Participant Team
user_1_p_team
user_3_p_team
host_p_team +
Host_82878_Team
Host_74541_Team
anc

neard

Hold down "Control”, or "Command” on a Mac, to select more than one.

(] Is disabled

Evaluation script: Currently: evaluation_scripts/aaa40892-b10b-4c38-b1ed-a048d8d47ffe.zip
Change: | choose file No file chosen

Approved By Admin

() Featured

Allowed email domains:

Blocked email domains:

Save and add another Save and continue editing SAVE

_static/img/github_based_setup/evalai_profile.png
A Dashboard Documentation Discuss

\/ Token copied to your clipboar

API Authentication Token

Cancel Download JSON Refresh Token

_images/leaderboard.png
EvalAl

Random Number Generator Challenge
Organized by: East Victorberg Host Team

i Overview Ll Evaluation 1 Phases (&) Participate = Leaderboard

Please select from following phases

Phase: Test Phase, Split: Train Split v
Rank < Participant Team < Metric1 < Metric2 <
1 Anthonybury Participant Team 26.00 26.00

2 Test Participant Team 39.00 19.00

Metric3 <

8.00

53.00

Total <

70.00

0.00

Last Submission at %

2 minutes ago

38 seconds ago

_static/img/github_based_setup/host_config_json.png
Q Search or jump to... Pull requests Issues Marketplace Explore

& Ram81/VQA-challenge ® Unwatch ~ 1 ¥% Sstar 0 %9 Fork 0

generated from Cloud-CV/EvalAl-Starters

<> Code Issues 6 Pull requests Actions Projects Wiki Security Insights Settings
VQA-challenge / github / host_config.json in challenge Cancel changes
<> Edit file Preview changes Tabs E 8 < No wrap E
{
"token": "<token>",
"team_pk": "1032",
"evalai_host_url": "https://eval.ai"

_static/img/github_based_setup/build_logs.png
0 Search or jump to... / Pull requests Issues Marketplace Explore L+~ Q_"f'h

& Ram81 /VQA'Cha"enge ® Unwatch ~ Y7 Star 0 % Fork 0O

generated from Cloud-CV/EvalAl-Starters

Code Issues 6 Pull requests ® Actions Projects Security Insights Settings

0 Update challenge description “

_ Re-runjobs ~
challenge @ -O- 57a34cf

v evalai-challenge build

) Q Search logs
on: push succeeded now in 19s

v build > @ Setupjob 3s
> @ Run actions/checkout@v2 1s
> @ Setup Python 7s
> @ Install dependencies 5s
> @ Validate challenge 1s
> @ Create or update challenge 2s
v @ Post Run actions/checkout@v2 0s

Post job cleanup.

git version 2.32.0

http.https://github.com/.extraheader

_images/FRi5ofa.png
Home > Challenges > Challenges

Select challenge to change

O

TITLE

-- 4 Go

START DATE (UTC)

0 of 6 selected

END DATE (UTC)

CREATOR

PUBLICLY AVAILABLE

ENABLE FORUM

WELCOME,

ANONYMOUS LEADERBOARD FEATU

O

Random
Number
Generator
Challenge

Aug. 18,2018, 9:38 p.m.

Aug. 16,2019, 10:59 p.m.

Port Michael Host Team

: host

]

]

(<]

(<]

Visual
Dialog
Challenge
2018

O

() VizWiz
Challenge
2018

() Vision and
Language
Navigation

() Visual
Storytelling
Challenge
(NAACL
2018)

April 4,2018, midnight

May 22, 2018, midnight

March 13, 2018, midnight

March 15,2018, 4 a.m.

Aug. 15,2099, 11:59 p.m.

June 22, 2100, midnight

Dec. 31, 2099, midnight

March 17,2018, 3:59 a.m.

Port Michael Host Team

Port Michael Host Team

Port Michael Host Team

Port Michael Host Team

: host

: host

: host

: host

_static/img/github_based_setup/commit.png
& Ram81/VQA-challenge

generated from Cloud-CV/EvalAl-Starters

<> Code

() Issues 4 1 Pull requests

(») Actions

[M1] Projects [wiki

¥ challenge had recent pushes less than a minute ago

¥ challenge ~ ¥ 2 branches

This branch is 4 commits ahead of master.

Ram81 Update challenge description

.github/workflows

annotations

challenge_data
code_upload_challenge_evaluation
evaluation_script

github
remote_challenge_evaluation
templates

worker

cE e EEEREERE @

.gitignore

© 0 tags

Init
1 queued check

Init
1 e evalai-challenge / bu...

Init

Initial commit

Initial commit

Update host_config.json

Initial commit

Initial commit

Initial commit

Initial commit

Some checks haven't completed yet

) Security |~ Insights 51 Settings
Compare & pull request
Go to file Add file ~

19 Contribute ~

® cba319c now O 5 commits

10 minutes ago
10 minutes ago
Details

10 minutes ago
10 minutes ago
10 minutes ago

2 minutes ago
10 minutes ago
10 minutes ago

10 minutes ago

10 minutes ago

@& Unwatch v 1 Y7 Star 0 % Fork

About el

No description, website, or topics
provided.

[0 Readme

Releases

No releases published
Create a new release

Packages

No packages published
Publish your first package

Languages

N)
® Python 87.3% ® HTML 10.4%
© Shell 1.4% @ Dockerfile 0.9%

_static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/img/github_based_setup/use_template_1.png
Q Search or jump to... Pull requests Issues Marketplace Explore

i Cloud-CV [/ EvalAl-Starters Template ®Watch v 9 Y7 Star M % Fork 81

<> Code (©) Issues 1% Pull requests 2 (») Actions [M1] Projects 07 wiki) Security |~ Insights

Use this template

¥ master ~ ¥ 2 branches 0 tags Go to file Add file ~ + Code ~ About b

How to create a challenge on EvalAl?

E dependabot Bump urllib3 in /code_upload_challenge_evaluation/requirements (#... .- e547bf7 19 days agowal50 comumai
agent data-science
[0 .github/workflows Change workflow, update python version, and format code(#32) 7 months ago reinforcement-learning ai cv. ml
.) o . rl getting-started environments
[0 annotations Add challenge configuration information 3 years ago
data-science-competition get-started

[0 challenge_data Add blank line 2 years ago evalai
[0 code_upload_challenge_evaluation Bump urllib3 in /code_upload_challenge_evaluation/requirements (#49) 19 days ago

[0 Readme
[0 evaluation_script Add code to install custom local package in evaluation script (#42) 5 months ago
[github Change Authorization header from Token to Bearer (#45) 5 months ago

Releases
[0 remote_challenge_evaluation Fix update_submission URL in remote challenge evaluation (#47) 4 months ago .

No releases published
[templates Add challenge configuration information 3 years ago Create anew release
[0 worker Test evaluation script in the challenge config 2 years ago

Packages
[.gitignore Minor typo fix 2 years ago 9

. A . . No packages published

[README.md Move GitHub challenge creation to top and fix header in remote evalu... 5 months ago Publish your first package
[% challenge_config.yaml Challenge Config: Add allowed submission types field for phase(#30) 8 months ago

_static/comment.png

_static/img/my_submission_private.png
William Challenge

Organized by: West Nathan Host Team
Starts on: Sep 12,2020 11:47:52 PM
Ends on: May 5,2022 11:47:52 PM

" 1 £ @My Submissions e

My Submissions
My Participated Team: Lake Brittany Participant Team
Gina Phase v

Total Submissions: [

Execution time (sec.) ~ Submitted file Result file Stdoutfile Stderr file Submitted at Show on leaderboard | Edit
0.000004 @ Link None None None Dec 21,2020 10:47:53 PM N s
0.000008 @ Link None None None Dec 21,2020 10:47:53 PM N s
0.000004 @ Link None None None Dec 21,2020 10:47:53 PM N s

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/img/1.png
< c| & Secure | httpsy//evalaicloudev.org klm m

EvalAl o
(0]

Evaluating state of the art in Al

£

o

_static/up-pressed.png

_static/img/github_based_setup/use_template_2.png
Q Search or jump to...

© 2021 GitHub, Inc.

Pull requests Issues Marketplace Explore

Create a new repository from EvalAl-Starters

The new repository will start with the same files and folders as Cloud-CV/EvalAl-Starters.

Owner * Repository name *

@ rams1~ /‘ VQA-challengd v ’

Great repository namei VQA-challenge is available. }a Need inspiration? How about potential-octo-potato?

Description (optional)

® l:_l Public
] Anyone on the internet can see this repository. You choose who can commit.
O E] Private
You choose who can see and commit to this repository.

[Include all branches
Copy all branches from Cloud-CV/EvalAl-Starters and not just master.

Create repository from template

Terms Privacy Security Status Docs Contact GitHub Pricing API

Training

Blog About

_static/img/3.png
C | @ Secure | httpsy/evalaicloudcv.org/au

EvalAl

Evaluating state of the art in Al

n SignUp

Already have an account? Log In

_static/img/4.png
€«

C | @ Secure

EvalAT

https://evalai.cloudcv.org/web/dashboard

Ongoing Challenges

1

Go to Analytics Dashboard

My Host Teams

0

w or Create

%@ H

My Participant Teams

_static/img/2.png
<

C | @ Secure

htps:

‘evalai.cloudcv.org/au

EvalAl

Evaluating state of the art in All

Log In

Start with a new account

_static/img/7.png
owE H

EvalAT pseudocoders

€ C | @ httpsy/evalai.cloudcv.org/web,

all

VQA Real Image Challenge (Open-Ended) 2017
V(2)A Ratien

(%) Participate

(4

All Challenges

derboard

My Existing Participating Teams Create a New Team

Page 0 of 0 | a

_static/img/8.png
x| E Wl

EvalAT Hi pseudocoders

¢ € |® nitpsy/evalaicloudev.org/web/challenges/challeng:

il

% Star 23

VQA Real Image Challenge (Open-Ended) 2017
\LQJ-Y i vanream

All Challenges e\ Lot on 1 Phase (&) Participate board
)
2ot
[}
ant T My Existing Participating Teams Create a New Team
4
ha @ Team: pseudocoder

Created By: pseudocoders

Page 0 of 1

_static/img/5.png
=

C | @ Secure | htipsy/evalaicloudcv.org/w

EvalAT

(]

All Challenges

o
%

A

0Ongoing Challenges

VOA VOA Real Image Challenge
(Open-Ended) 2017

LA K)

VQA Team

Apr 27,2017 12:30:00 AM

Dec 31,2099 5:30:00 AM

View Details

Upcoming Challenges

No Upcoming Challenges found!

Past Challenges

oW H

1 pseudocoders

_static/img/6.png
)

C | ® httpsi//evalaicloudev.org/webj/challenges/challenge-page/1/overview

o v W H

EvalAT

All Challenges

Participant Teams

"

VQA Real Image Challenge (Open-Ended) 2017
v A Organized by: VOA Team

iOverview Ll Evaluation 1Phases (&) Participate

VQA Real Image Challenge (Open-Ended) 2017

Who is wearing glasses?
man woman

Where is the child sitting?

